1 Agronomy

Management
1.1 Duval R., F. Courtaux, P. Armette - Cover crops species and varieties in field characterisation, for accurate sugar beet grower’s advice
1.2 Richards J., S. Mooney, M. Stevens, D. Sparkes - Cover crops – useful for improving soil structure prior to sugar beet?
1.3 Stevens W.B., J.D. Jabro, A. Kalil, W.M. Iversen, B.L. Allen, U.M. Sainju - Performance of direct-seeded sugar beet in two crop rotations
1.4 Malmilehto S. - Effect of fleece cover to sugar beet yield and quality
1.5 Muurinen S., S. Malmilehto, M. Turakainen - Lighting up the sugar beet
1.6 Comar A., F. Maupas, F. Aubertin, K. Velumani, J. Beauvois, J. Labrosse, N. Henry, F. Baret - Wireless connected sensor for improving sugarbeet crop management, yield prediction and disease assessment
1.7 Crécy H. - Inter row spacing and sugar beet population
1.8 Seebode S., M. Molthan, K. Schnepel, A. Krieg - Effects of optimized plant distribution on yield, quality and storability of sugar beets
1.9 Townsend T., D. Sparkes, S. Bowen, N. Crout - Data and model analytics to support customised crop management advice
1.10 Duval R., C. Toqué, F. Flenet, A.L. De Cordoue, S. Cadoux, A. Tailleur - Syppre project: design cropping systems to meet agricultural challenges by 2025
1.11 Gouwie C. - 20 years of French sugar beet technical management evolution
1.12 Kaffka S., R. Tharp - Yield progress and resource use in sugar beet production in the Imperial Valley of California

Water use efficiency and irrigation
1.13 Barratt G., M. Stevens, E. Murchie, D. Sparkes - Understanding sugar beet water use efficiency (WUE)
1.14 Tarkalson D.D., B.A. King, D.L. Bjorneberg - Effects of deficit irrigation on sugarbeet soil water extraction
1.15 Kaffka S., K. Bali, O. Bachie - Comparison of surface irrigation with subsurface drip irrigation in the Imperial Valley of California for root yield and quality, water use and susceptibility to late-season root rots

Nutrition
1.16 Eigner H., C. Kreitzer - Cation Exchange Capacity – a necessary tool in sugar beet nutrition?
1.17 Duval R. et al. - Mineral nitrogen fertilisation: can application modality improve fertiliser’s efficiency?
1.18 Curcic Z., M. Ciric, N. Nagl, K. Taski-Ajdukovic - Effect of nitrogen fertilizer application on sugar beet seed yield and quality
1.19 Tarkalson D.D., D.L. Bjorneberg, G. Dean - Improving sugar beet nitrogen recommendations in the Western United States
1.20 Bernadon-Méry A. - MULTISUC activates plant nutrition metabolism to improve sugar beet yield
1.21 Muurinen S. - Survey of nutrient status of sugar beet in Finland
1.22 Malmilehto S., M. Turakainen, S. Muurinen - Biochar addition to sugar beet soils
1.23 Muurinen S., S. Malmilehto - Applying starter phosphorous in Finland, how EU regulations have changed the way of using phosphorous in Finland
1.24 Horn D. - Effect of biogas fermentation residues and management of precrop on wheat and EUF extractable N and further nutrients in soil
1.25 Bresolin A., G. Campagna, M. Cenacchi - Use of probes to monitor the water and nutritional status of sugar beet
1.26 Campagna G., L. Marcheselli, D. Rosini - Improving technical assistance through drone and satellite surveys
1.27 Olsson Å. - Long term changes in soil-pH after liming with factory lime and lime stone meal
1.28 Malmilehto S. - Effect of lime with different doses, tillage systems and varieties
1.29 Malmilehto S. - Different tillage systems effects on sugar beet farming
<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>Sugar beets grown in the one and two-step strip-tillage system at different soil cultivation depths</td>
<td>Przybył J., N. Mioduszewska, I. Kowalik</td>
</tr>
<tr>
<td>1.31</td>
<td>Strip-till sugar beet yield affected by rotation diversity and cereal crop residue management</td>
<td>Stevens W.B., J.D. Jabro, W.M. Iversen, B.L. Allen, U.M. Sainju</td>
</tr>
<tr>
<td>1.32</td>
<td>Comparison of strip tillage and conventional tillage on yield and quality in U.S. Sugarbeet production</td>
<td>Tarkalson D.D., W.B Stevens, D.L. Bjorneberg</td>
</tr>
<tr>
<td>1.33</td>
<td>Connected devices in sugar beet production</td>
<td>Van Honacker A.C.</td>
</tr>
<tr>
<td>1.34</td>
<td>Assessment of mechanical properties of two sugar beet (Beta vulgaris L.) varieties during harvest and long-term storage in Fars zone Iran</td>
<td>Aghaei M., M. Honarvar, M. Mizani, M. Bazrafshan</td>
</tr>
<tr>
<td>1.35</td>
<td>Interaction of surface moisture and frost on the storability of sugar beets</td>
<td>Ekelöf J., J. Skyggeson</td>
</tr>
<tr>
<td>1.36</td>
<td>Experiments for storage of sugar beet by covering the clamp</td>
<td>Potyondi L., J. Kimmel, F. Csima</td>
</tr>
<tr>
<td>1.37</td>
<td>Selection of sugar beet varieties with good storability at KWS</td>
<td>Schnepel K., W. Beyer, A. Loock</td>
</tr>
<tr>
<td>1.39</td>
<td>Analysis of methane efficiency of sugar beet used as co-substrate in biogas production</td>
<td>Mioduszewska N., J. Przybył, J. Dach, K. Pilarski</td>
</tr>
<tr>
<td>1.40</td>
<td>A connected beet, a tool to limit storage losses</td>
<td>Tordeur A.</td>
</tr>
<tr>
<td>1.41</td>
<td>Stability of the marc content of sugar beet varieties in different environments</td>
<td>Hoffmann C., M. Leijdekkers, J. Ekelöf, F. Vanutsem</td>
</tr>
<tr>
<td>1.42</td>
<td>On-field determination of POL sugar using Near Infrared Spectroscopy</td>
<td>Musidłowska-Persson A., H. Renard</td>
</tr>
<tr>
<td>2.1</td>
<td>Molecular genetic interaction of cytoplasmic male sterility in sugar beet</td>
<td>Arakawa T.</td>
</tr>
<tr>
<td>2.3</td>
<td>Original genetic diversity discovery comparing a sugar beet elite reference panel with progenies from (sugar beet elite x exotic) crosses</td>
<td>Pegot-Espagnet P., B. Desprez, B. Devaux, P. Devaux, K. Henry, N. Henry, G. Willems, E. Goudemand, B. Mangin</td>
</tr>
<tr>
<td>2.4</td>
<td>Prediction of sugar beet hybrid performance and heterosis using genetic distance estimated with SSR markers</td>
<td>Taski-Ajdukovic K., N. Nagl, M. Ciric, Z. Curcic</td>
</tr>
<tr>
<td>2.5</td>
<td>AMMI analysis of genotype by environment interaction of sugar beet hybrids grown in different fertilizer treatments</td>
<td>Ciric M., Z. Curcic, G. Jacimovic, M. Mirosavljevic, N. Nagl, K. Taski-Ajdukovic, S. Prodanovic</td>
</tr>
<tr>
<td>2.6</td>
<td>Genetic variation for early maturity in sugar beet half-sib families</td>
<td>Rajabi A., M. Aghaeizade, S. Ebrahimi Souteh, S. Bagher Mahmoudi</td>
</tr>
<tr>
<td>2.7</td>
<td>Development of a protocol to use X-ray microtomography imaging as a phenotyping tool for sugar beet seed</td>
<td>Trigui G., L. Le Corre, M.L. Avrillon, M. Ghali, A. Charrier</td>
</tr>
<tr>
<td>2.8</td>
<td>A computer vision tool for a high-throughput phenotyping of seedlings during elongation – application to sugar beet</td>
<td>Rasti P., E. Belin, D. Demilly, S. Ducournau, C. Dürr, F. Chapeau-Blondeau, D. Rousseau</td>
</tr>
<tr>
<td>2.9</td>
<td>Sugarbeet field phenotyping from the PHENOMOBILE-LV</td>
<td>Comar A., D. Dutartre, J. Beauvois, N. Henry, S. Thomas, B. de Solan, S. Madec, F. Baret</td>
</tr>
<tr>
<td>2.10</td>
<td>Assessment of genotypes resistances to Cercospora from multispectral UAV measurements</td>
<td>Comar A., D. Dutartre, N. Henry, F. Baret, J. Beauvois, M. Hemmerlé, F. Maupas</td>
</tr>
<tr>
<td>2.11</td>
<td>Hyperspectral 3D plant models of sugar beet</td>
<td>Mahlein A.-K., R. Roscher, J. Dupuis, S. Paulus, H. Kuhlmann, J. Behmann</td>
</tr>
</tbody>
</table>
3 Pest, disease and weed challenges

Fungal leaf diseases

3.1 Hansen A.L., T. Marten Heick, A. Fejer Justesen, L. Munk, R. Labouriau, K. Wu, L. Nistrup Jørgensen

Leaf disease control in sugar beet performed early before appearance of visual symptoms and detection of fungal spores using spore traps and qPCR

3.2 Marten Heick T., A. Fejer Justesen, A.L. Hansen, L. Nistrup Jørgensen

Spore trapping of fungal leaf diseases of sugar beet in Denmark

3.3 Varrallion T. et al.

A climatic modeling of four sugar beet diseases (Cercospora, Erysiphe, Uromyces, and Ramularia) using neural network procedures of the date of exceeding the threshold triggering the first fungicide application (T1)

3.4 Huet W.

Cercospora model developed in CRISTAL UNION. Presentation of 5 years of experimentation and development

3.5 Khan M.

Using old tools to control new forms of Cercospora beticola

3.6 Rivera-Varas V., M. Bolton, G. Secor

Comparative sensitivity of Cercospora beticola to multiple DMI fungicides

3.7 Kimmel J., L. Potyondi, F. Csima

Testing sugar beet varieties under artificial infected conditions with Cercospora beticola

3.8 Piszczek J., E. Moliszewska, M. Lukomski

The economics of different programs of Cercospora control of sugar beet with different resistance level

3.9 Kempl F.

Control of resistant Cercospora Leaf Spot

3.10 Bryson R., J. Bruns, D. Uerkvitz, E. Ardisone, S. Babinet, J.-F. Meynet, P. Lacroix

Fungicide resistance combined with EU legislation put sugar beet production at risk

3.11 Blanc F.

Amistar Gold – a new sugar beet fungicide, and M280, a new multisite fungicide as a response to Cercospora beticola resistance

3.12 Bukvic-Lukinic D., A. Babic, D. Budakov, V. Stojsin, F. Bagi, M. Grahovac

Efficacy of mancozeb and tetraconazole in control of Cercospora beticola of known sensitivity to tested fungicides

3.13 Campagna G., A. Fabbri, A. Vacchi, D. Rosini, M. Zavanella

Integrated strategies for protecting the foliage

3.14 Hanse B., E. van Oorschot, J. Schoone

Management of Stemphylium beticola in sugar beet in the Netherlands

Root rot diseases

3.15 Hassani M., B. Heidari, P. Stevanato, G. Campagna, C. Broccanello, P. Nourizi, G. Concheri, L. Panella

A candidate single nucleotide polymorphism (SNP) marker linked to resistance to infection with rhizoctonia in sugar beet

3.16 Nottensteiner M., R. Apfelbeck, S. Steinberger, H. Maier, J. Maier, M. Zellner

Development of a routine method for Rhizoctonia solani AG2-2IIB inoculum density determination from arable soils

3.17 Richard B., M. Verger, C. Steinberg

Field trials design to assess sugar beet varieties resistance to Rhizoctonia solani: results from the R2B project

3.18 Stojišn V., F. Bagi, V. Crnojević, A. Stankov, B. Ivošević, D. Budakov, Ž. Ćurčić

Comparative analysis of drone photogrammetry and standard phytopathological methods in evaluating sugar beet root diseases

3.19 Bartholomäus A., S. Schulze, S. Mittler, H.-J. Koch, B. Maßländner, M. Varrelmann

Effects of sugar beet cultivar, crop rotation and fungicide treatment on Rhizoctonia solani concentration in field soils

Pathogenic variability and genetic characterization of Rhizoctonia solani AG-2-2 causing crown and root rot on sugar beet in France

3.21 Kreitzer C., H. Eigner

Five year of microbial cover crop coating towards Rhizoctonia affliction in sugar beet

Integrated control-strategies against Rhizoctonia solani in sugar beets – Influence of soil preparation and previous crop

3.23 Knight T.

Vibrance® SB – a new broad-spectrum fungicide seed treatment for sugar beet

Attempts for the development of violet root rot infection bioassay in the greenhouse and field with Helicobasidium purpureum inoculation

3.25 Turakainen M., S. Muurinen

Can we affect Aphanomyces by increasing Ca fertilizer?

3.26 Ripa L., B.-L. Lennefors

A method for evaluation of tolerance to Macroghomina phaseolina in sugar beet
Characterization of *Macrophomina phaseolina* (Tassi) Goid. isolates from sugar beet in Serbia, based on chlorate phenotypes and pathogenicity

3.28 Nagl N., K. Taški-Ajduković, D. Budakov, V. Stojišin
Estimated genetic variation in *Macrophomina phaseolina* from sugar beet using SSR markers

3.29 Stojišin V., A. Stankov, J. Medić, D. Budakov, G. Jacimović, M. Čirić, Ž. Ćurčić
Influence of NPK mineral nutrition and cultivar on sugar beet root rot

3.30 Kaffka S., W. Wintermantel, R. Lewellen
A visual scale for rating damage and loss to beet vascular necrosis occurring in California

3.31 Boehm D., E. De Bruyne, M. Metzger, G. Secor, V. Rivera, S. Kaffka
Screening methodology for *Pectobacterium* subspecies in sugar beets

3.32 Kremer P., C. Lang, H.-J. Fuchs
Sugar beet growth under climate change – challenges and potentials?!

Beet pests

3.33 Schremser M., F. Kempl
Beet moth – an issue under dry conditions

3.34 de Zinger L., E. Raaijmakers, M. de Korte, D. Doornheijn
Towards beet fly monitoring predicting optimal foliar insecticide application(s) to prevent damage by the beet leaf miner

3.35 Wenninger E.J., T.B. Daley
Screening for host resistance against the sugar beet root maggot, *Tetanops myopaeformis* (Diptera: Ulidiidae), using a greenhouse bioassay

3.36 Moltman M., J. Wießner, H.-W. Roth, B. Hollschulte
Characterization of nematode occurrence on a regional level by different approaches of nematode detection

3.37 Wright A., M. Stevens, M. Back, D. Sparkes
Beet Cyst Nematode: Interactions between *Heterodera schachtii* and sugar beet

3.38 Bodner G., M. Alsalem, G. Sigl, H. Eigner
Are sugar beet root systems different between genotypes with variable nematode susceptibility?

Effect of sugar beet variety type on population dynamics of *H. schachtii* and sugar beet yield in northern Germany 2013-2015

3.40 Olsson Ā., L. Persson
Free living nematodes in sugar beet – damage thresholds and options for control

3.41 Zavanella M., D. Rosini, A. Vacchi, G. Campagna
Evolution of soil fertility and health status (*H. schachtii*) in the Coprob districts

3.42 Raaijmakers E., L. de Zinger, J. Schoone, E. van Oorschot
Effect of new cover crops and mixtures on multiplication of *Heterodera schachtii* and *H. betae* in climate room trials as a measure within ecological focus areas (EFA’S)

3.43 Nowakowski M., P. Skonieczen, L. Matyka, M. Zurek
The impact of cultivating new white mustard lines and selected sugar beet cultivars on the *Heterodera schachtii* population in black earth

3.44 Turakainen M., S. Muurinen
Beet cyst nematode density in Finnish sugar beet soils

Virus diseases

3.45 Behnke N., W. Beyer, A. Loock
Yellowing viruses in sugar beet

3.46 Boyer F., F. Maupas
Durable plant protection strategies without neonicotinoids

3.47 Liebe S., J.F. Gil, E. Savenkov, E. Maiss, M. Varrelmann
Beet necrotic yellow vein virus and *Beet soil-borne mosaic virus* – how close is the relationship?

Challenges and solutions in weed control

Glyphosate-resistant sugar beet in the US: a weed science perspective

3.49 Kerckove P., S. Decouvelaere.
An autonomous solar robot for weed control

3.50 Wegener M.
Conviso ONE – efficacy against hard to control weeds and evaluation of the soil activity

4 Open topics

4.1 Raaijmakers E., B. Hanse, M. Leijdekkers, F. Tijink
New facilities make sugar beet research at IRS ready for the future

4.2 Smit A.B., R.A. Jongeneel, G.C. van Kooten
Price and market effects of quota abolishment and coupled support

4.3 Jechet U., U. Bedenk
Sugar beets (KWS Feedbeet) – a new and energy rich feedstuff for cattle feeding