### 1 Agronomy
#### Fertiliser use and optimisation

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>I. Bajić et al.</td>
<td>Effect of nitrogen mineral nutrition in extreme climatic conditions on sugar beet production</td>
</tr>
<tr>
<td>1.2</td>
<td>P. Barłóg, et al.</td>
<td>Content and accumulation of nutrients by sugar beet varieties differing in yield potential and tolerance to pathogens</td>
</tr>
<tr>
<td>1.3</td>
<td>D. Hyndrikx et al.</td>
<td>Nitrogen and energy use in sugar beet</td>
</tr>
<tr>
<td>1.4</td>
<td>A. van Valen</td>
<td>Effects of different nitrogen fertilisation strategies on sugar beet growth and yield</td>
</tr>
<tr>
<td>1.5</td>
<td>A. van Valen</td>
<td>Effects of sodium fertilisation in sugar beet on sandy soils in the Netherlands</td>
</tr>
<tr>
<td>1.6</td>
<td>G. Heller et al.</td>
<td>CULTAN – an alternative fertilisation method in sugar beet in the face of sustainable change?</td>
</tr>
<tr>
<td>1.7</td>
<td>O. Popov et al.</td>
<td>Application of mealworm FRASS fertiliser in sugar beet production: Step towards profitable and ecologically balanced sugar beet production</td>
</tr>
<tr>
<td>1.8</td>
<td>D. Horn et al.</td>
<td>Development of humus-C, EUF extractable organic nitrogen (N\textsubscript{org}) and EUF dissolved organic carbon (DOC) in a long-term field trial with different precrops and N-P-K fertilisation strategy</td>
</tr>
<tr>
<td>1.9</td>
<td>R. Kaipainen</td>
<td>New methods of increasing carbon sequestration on sugar beet fields in Finland</td>
</tr>
<tr>
<td>1.10</td>
<td>S. Muurinen</td>
<td>LASSO – use the nitrogen and bind the carbon</td>
</tr>
<tr>
<td>1.11</td>
<td>G. Barratt</td>
<td>Optimising sugar beet management practices to reduce greenhouse gas emissions</td>
</tr>
</tbody>
</table>

#### Irrigation and drought tolerance

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.12</td>
<td>A. Olsson Nyström, L. Persson</td>
<td>Long-term effects of liming in crop rotations with sugar beet</td>
</tr>
<tr>
<td>1.13</td>
<td>R. P. Naegele et al.</td>
<td>Seedling drought tolerance in sugar beet is predicted by leaf water vapor and stomatal conductance</td>
</tr>
<tr>
<td>1.14</td>
<td>J. Adrian et al.</td>
<td>Description of the dynamics of water stress in sugar beet crops</td>
</tr>
<tr>
<td>1.15</td>
<td>P. Tauvel et al.</td>
<td>Evaluating and optimizing strategies to irrigate sugar beet</td>
</tr>
<tr>
<td>1.16</td>
<td>K. B. Abreha et al.</td>
<td>Drought tolerance screening of sugar beet lines under greenhouse and field conditions</td>
</tr>
<tr>
<td>1.17</td>
<td>D. Hyndrikx et al.</td>
<td>Robust trialling under climate change</td>
</tr>
</tbody>
</table>

#### Root analysis

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td>L. Dahl et al.</td>
<td>Sugar beet fine root distribution: root imaging analysis platform for sugar beet root system measurement</td>
</tr>
<tr>
<td>1.19</td>
<td>J. Arnhold et al.</td>
<td>A deeper look – root growth observations with the minirhizotron technique</td>
</tr>
</tbody>
</table>

### 2 Storage

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A. Andrušiak et al.</td>
<td>Quality Parameters of sugar beet roots depending on the method of harvesting and length of storage</td>
</tr>
<tr>
<td>2.2</td>
<td>G. Croonen</td>
<td>AI based detection and quantification of soil adhesion, excess vegetation, damage and rot on sugar beets</td>
</tr>
<tr>
<td>2.3</td>
<td>M. Leijdekkers et al.</td>
<td>Effect of different virus yellows infection timepoints on storability</td>
</tr>
<tr>
<td>2.4</td>
<td>S.L. Kandel et al.</td>
<td>Use of low concentration chlorine dioxide gas to manage storage disease in sugar beets</td>
</tr>
<tr>
<td>2.5</td>
<td>J. Ekelöf, A. Wauters</td>
<td>Quick tests for sugar beet respiration</td>
</tr>
<tr>
<td>2.6</td>
<td>K. Fugate et al.</td>
<td>Transcriptional and metabolomic changes in postharvest sugar beet roots identify genes potentially involved in respiratory sucrose loss</td>
</tr>
<tr>
<td>2.7</td>
<td>D. Ilina et al.</td>
<td>Disentangling factors related to storability in sugar beet from different (molecular) angles</td>
</tr>
</tbody>
</table>
3 Breeding
Breeding methods
3.1 C. Diller et al. Improving emasculation success in sugar beet
3.2 B. Müller et al. Phenomic selection using Near-Infrared (NIR) wavelengths: a new tool to predict sugar yield
3.3 R. P. Naegle, L. E. Hansen The USDA ARS East Lansing sugar beet breeding programme: adapting to meet the needs of a changing industry
3.4 F. Finger, K. Fugate Expression of SWEET and TST sugar transporters during sugar beet growth and taproot storage
3.5 T. Erichsen et al. The challenge to produce a representative sugar beet sample

Bolting resistance
3.6 G. Campagna, T. Iaboli Varieties with a reduced degree of induction to early flowering for autumn sowing in the beet growing areas of COPROB (Italy)
3.7 C. Chu Genetic analysis of genes controlling annual and biennial growth habit in sugar beet germplasm

Remote sensing for breeding and precision farming
3.8 D. Eyland et al. Remote sensing technologies for data-driven plant breeding
3.9 S. Jeppson The use of unmanned aerial vehicles (UAVs) in sugar beet cultivation
3.10 F. Joudelat, S. Soubreyrand Satellite imagery use-cases for sugar beet monitoring
3.11 O. Nielsen, C. Szilas Quantification of soil parameters and agricultural product interactions using field mapping, precision farming technologies and vegetation indexes – a GIS-based alternative to classical field trials

4 Phytopathology
Fungal leaf diseases
4.1 Q. Tilloy Cristal Cerc'OAD®: a Cercospora forecasting model used by farmers
4.2 K. Pavlu et al. 3 years of experience with the upgraded signalling system of Cercospora beticola
4.3 A. Hubaux, A. Wauters Efficacy of foliar fungicides to control Cercospora beticola
4.4 A. Kiniec, J. Piszczek The in vitro activity determination of essential oils against Cercospora beticola
4.5 F. Kempl, M. Seiter Control of resistant Cercospora leaf spot by fungicides and tolerant varieties
4.6 A. K. Lien et al. DMI fungicide sensitivity in Cercospora beticola following forced selection from repeated application and tank-mixing
4.8 A. Buckley The sweet side of fungicides – physiological effects of fungicides on sugar beet growth and yield
4.9 J. Kimmel et al. Optimisation of fungicide control with copper against Cercospora beticola
4.10 L. Potyondi et al. Change in copper content in beet leaves by using various copper compounds and adjuvants under the influence of precipitation
4.11 Y. Yang et al. Impact of cultivar resistance on Cercospora beticola epidemiology on sugar beet
4.12 A. Compton et al. Integrated fungal foliar disease management of sugar beet
4.13 A. L. Hansen, P. Tréné Interactions between crop biomass and development of leaf diseases in sugar beet with the potential to graduate fungicide applications
4.14 J. Li et al. QTL mapping for a monogenic resistance of powdery mildew in sugar beet
4.15 D. Hyndrikx et al. Breeding for robust and durable leaf disease tolerance – doing more with less?
4.16 E. Thorell, V. Rossi Breeding as a mitigation tool to reduce reliance on chemicals
4.17 E. Thorell, L. Ripa Multigenic resistance leads the way on sustainable Cercospora leaf spot control
4.18 H. Ebmeyer et al. CR+ Management Goal: GREEN LEAVES UNTIL HARVEST – an integrated management concept for Cercospora control in sugar beet
4.19 J. C. Lein et al. Gaining ground against Cercospora – sustainable disease control with CR+
Rhizomania / soilborne diseases

4.20  M. Fattori, B.-L. Lennefors  
Survey of Rhizomania Rz1 resistance break-down in North Africa and Middle East

4.21  V. Ramachandran et al.  
Molecular characterisation of Rhizomania resistance-breaking isolates of beet necrotic yellow vein virus in the United States

4.22  A. Shahpari, J. Lissens  
Aphea.Bio’s APEX platform: screening for biocontrol microorganisms against soilborne diseases in sugar beet

4.23  B. Dotson et al.  
Breeding for better biocontrol symbiosis of Trichoderma against Aphanomyces

Virus yellows monitoring and control

4.24  M. Stange et al.  
MODEFY – MOonitoring and DEFence measures against yellowing virus diseases in sugar beet

4.25  A.J.D. Wright, M. Stevens  
Optimising the use of UAV-remote sensing to phenotype varietal tolerance to virus yellows

4.26  L. de Zinger et al.  
National variety list admission criteria for varieties with virus yellows tolerance in the Netherlands

4.27  N. Klingemann et al.  
Managing virus yellows in sugar beet – an integrated approach

4.28  V. Cadot et al.  
A new protocol to assess tolerance/ resistance for sugar beet varieties to virus yellows

4.29  M. Delsaux, E. Dubert  
Resistance and tolerance to virus yellows in hybrids from DLF Beet Seed

4.30  V. Puthanveed et al.  
Transcriptomic study on responses of sugar beet to beet mild yellowing virus

4.31  J. Lin Ni et al.  
Efficient and high-throughput identification for viruses in sugar beet

4.32  S. Schop  
Multiplex and Luminex assay for the detection of yellowing viruses

4.33  P. Hellin et al.  
Monitoring of beet yellows-associated viruses in Wallonia, Belgium

4.34  I. Stockmans et al.  
The VirBiCon project: towards sustainable management of viral yellowing in sugar beet

4.35  N. Rojas-Preciado et al.  
Forecasting the incidence of viral yellowing in sugar beet: Identification of risk factors

4.36  E. Everaert et al.  
Prevalence and virulence of yellowing viruses

4.37  S. Coenen et al.  
First attempt to map progress of virus yellows patches in different varieties

4.38  M. Beelaert et al.  
Understanding the beet yellows drivers in divers landscape contexts

4.39  M. Beelaert et al.  
Virobett – understanding the spread of sugar beet yellows viruses to improve integrated pest management strategies

Pest control

4.40  S. Czaja et al.  
Aphid monitoring in sugar beet – an important component in integrated pest management

4.41  J. Schmitt et al.  
SIMAphid: a simulation model for the first occurrence of Myzus persicae in spring, a vector of viruses in sugar beet

4.42  M. Gilard, A. Wauters  
Observation and warning network for insect pests

4.43  C. Dufrane et al.  
Intercropping beet-barley to reduce aphid populations in sugar beet fields in Belgium

4.44  O. Popov et al.  
Transmission risks of beet yellows virus by Myzus persicae and Aphis fabae aphids in diverse experimental conditions

4.45  A. Monteiro  
Assessments of solutions against Myzus persicae to prevent sugar beet yellows

4.46  K. Tougeron  
Agro-ecological infrastructures to help control aphids

4.47  T. Dardouri et al.  
Control of sugar beet yellows viruses by behavioural manipulation of aphid vectors in the field via volatiles

4.48  M. Stevens et al.  
Beet moth monitoring in the north-west of Europe

4.49  E. Raaijmakers  
Row application of insecticides and the use of green insecticides to achieve goals of the farm to fork strategy

4.50  S. Gunter  
Alternative cultivation techniques for sugar beet
4.51 C.A. Roß, N. Stockfisch
Appropriate indicators for monitoring chemical plant protection use in sugar beet cultivation

4.52 G. Campagna, T. Iaboli
Lixus junct diffusion on Sugar Beet in Po Valley and control strategy

4.53 D. Lemic et al.
Evaluating sugar beet varietals and seed treatments for enhanced pest control

4.54 M. Dokal, M. Seiter
Efficacy of a new active ingredient in sugar beet coating

4.55 Z. Klukowski, J. Piszczek
Modeling the spring migration timing of beet root weevil (Asproparthenis punctiventris (Germ.)) based on the sum of effective temperatures

4.56 A. Kurtovic et al.
Data- and model-based prediction of the sugar beet weevil occurrence

4.57 K. Sielemann et al.
Characterisation of a nematode tolerance locus in sugar beet

RTD and SBR

4.58 Ž. Ćurčić et al.
Field trial evaluation to RTD susceptibility/tolerance to RTD in Serbia: Is there a tolerance to RTD in current varieties?

4.59 B.-L. Lennefors et al.
Syndrome basses richesses, stolbur and Macrophomina: experiences shared by DLF Beet Seed

4.60 O. Czarnecki et al.
Deploying wild beet resistance sources for breeding SBR and RTD tolerant sugar beet varieties

4.61 H. Pfitzner et al.
Understanding the threat: the planthopper Pentastiridius leporinus and its impact on sugar beet cultivation in Southwest Germany

5 Weed control

5.1 J. Berg, H. Bernhardt
Herbicide reduction in sugar beet cultivation by band spraying and mechanical weed control

5.2 M. Nilars, O. Nielsen
Optimal use of herbicides in combination with mechanical weed control

5.3 T. Leborgne
Overview of the latest spot spraying technologies in beet

5.4 S. Muurinen
FarmDroid FD20 robot on the sugar beet and winter rapeseed rows in Finland

5.5 S. van der Heijden
Effectiveness of various herbicides pre-emergence in sugar beet

5.6 S. van der Heijden
Resistant ryegrass in sugar beet

5.7 M. Gertz et al.
CONVISO® SMART: driving innovation in sugar beet weed control

5.8 M.L. Wilhelm
CONVISO® SMART launch Germany – customer satisfaction and stewardship management hand in hand

5.9 C. Wellhausen et al.
Control of groundkeepers from ALS-tolerant sugar beet in following crops

5.10 G. Campagna, T. Iaboli
Experience of weed control strategy Conviso One on sugar beet in the Po Valley

5.11 G. Campagna, T. Iaboli
Experience of weed control strategy groundkeeper sugar beet in the Po Valley

5.12 M. Seiter et al.
To get most out of Conviso Smart varieties