

1 Efficiency and sustainability

1.1	Smit, A.B.	The effects of a new sugar regime reform on triple-P aspects of sugar (beet) production in different parts of the world
1.2	Gallasch, M., N. Stockfisch	Costs and ecoefficiency on sugar beet growing farms
1.3	Khan, M.	How do we improve sugar beet productivity by 2020?
1.4	Qi, A., K. Jaggard	Sugar beet yield in England under an extreme climate change scenario
1.5	Kremer, P., C. Lang, H.J. Fuchs	Possible impacts of the climate change on the sugar beet crop yields in Rhenish-Hesse and the Palatinate
1.6	Trimpler, K., H. Reineke, N. Stockfisch	The influence of nitrogen fertilizer application on CO_{2e} -emissions in sugar beet production
1.7	Cariolle, M., A. Viard	'NO GAS': Measurements and modelling of N_2O in main crops under French conditions
1.8	Ciuffreda, G., M. Sandonà, R. Giovanardi	An assessment of energy inputs and greenhouse gas emissions in Po Valley: comparison among sugar beet, corn and tomato
2	Breeding and seeds	
2.1	Richard, B.	How sustainability is taken in account in French official trials for variety registration
2.2	Townsend, B., E. Mutasa- Göttgens	Applying systems biology in sugar beet to increase crop value
2.3	Lucas, S., S. Vanstraelen, M. Lommel, G. Weyens, S. Barnes, M. Lefebvre, L. Sterck, Y. Van de Peer, A. Sharpe, C. Tallon, K. Koh	Insertion sites of transgenes in the sugar beet genome
2.4	Harper, S.	Changes in viability and germination speed of primed sugar beet seed during storage, revealed through both laboratory and field studies
2.5	Odunlami, B., S. Harper	The effect of priming and coating on sensitivity of sugar beet seed to low oxygen tensions
2.6	Harper, S. H. Webb, R. Clarke	Speed and uniformity of sugar beet seed germination determined by automated image capture and time course analysis
3	Fertilisation and nutrien	t availability
3.1	Elfström, K.	New ways of promoting actions to increase sugar yield – a Swedish example
3.2	Fischer, S., HJ. Koch, K. Bürcky	Influence of calcium on plant available nutrients in sugar beet soils – field trials in Central and Southern Germany
3.3	Lemme, H., K. Bürcky, HJ. Koch	Influence of calcium on plant available nutrients in sugar beet soils – laboratory and greenhouse experiments
3.4	Jacobs, A. HJ. Koch	Interaction of pre-crop effects and nitrogen fertilization in sugar beet production
3.5	Hetterich, T., F. Fürstenfeld, K. Bürcky	Long year development of potassium in sugar beets soils by means of EUF in Southern Germany
3.6	Hetterich, T., F. Fürstenfeld, K. Bürcky	Long year development of phosphorous in sugar beet soils by means of EUF in Southern Germany
3.7	Fürstenfeld, F., T. Hetterich, D. Horn	Evaluation of nitrogen from intercrops for sugar beets

3.8	Appel, T., J. Seelig, K. Venn, D. Horn	Boron availability for sugar beets as related to boron fertilization, liming and the carbonate content of soils	
3.9	Eigner, H., F. Kempl, D. Horn	Organic soil matter as characteristic parameter of Austrian sugar beet areas	
3.10	Schlinker, G.	Fertilisation of sugar beets with the digestate of biogas plants	
3.11	Potyondi, L., J. Kimmel, F. Csima	Nutrition with biogas sludge from fermentation of sugar beet pressed pulp in Sugar factory Kaposvar	
3.12	Saadaoui, N., A. Hailaf, K. Fares	Promoting the sustainable sugar beet crop by using lime sludge compost as an organic fertilizer	
4	Management improvements		
4.1	Kempl, F., G. Klinghofer, U. Fischer	Organically grown beets? A growing segment in the Austrian sugar production	
4.2	Sigl, G., E. Rauchberger, H. Refenner, H. Eigner, P. Liebhard	Effects of different soil management systems on yield and quality of sugar beet in a long-term trial	
4.3	Lassen, N.	Strip-tillage and sugar beet seed	
4.4	Wenninger, E., O. Neher, H. Neibling, D. Morishita	Soil water content, disease, insect, and weed response in strip-till sugar beet	
4.5	Nübel, V., K. Bürcky	Strip till sugar beet at Südzucker	
4.6	Bürcky, K., P. Risser	Water as limiting factor for future yield increase in sugar beet	
4.7	Legrand, G., A. Wauters	Early sowing of sugar beets in Belgium: possibilities of application and yield response	
5	Harvest, storage and wi	nter beet	
5.1	Legrand, G.	Sugar beet clamp covering in Belgium: possibilities of protection by heavy frost	
5.2	Eigner, H., W. Hein, F. Kempl, G. Sigl	Storability of different sugar beet varieties	
5.3	Curcic, Z., D. Danojevic, N. Nagl, K. Taski-Ajdukovic, L. Kovacev	Effect of interaction between harvest date and sugar beet varieties on root yield and sugar content	
5.4	Hein, W.	Comparison of models for the prediction of the technological beet quality	
5.5	Loel, J., C. Hoffmann	Winter beets – yield formation and quality for biogas production	
5.6	Reinsdorf, E., HJ. Koch	Variation in frost tolerance of winter beet (Beta vulgaris) due to phenotype	
5.7	Chiurugwi, T., H. Holmes, A. Qi, T. Chia, E. Mutasa- Göttgens	Development of molecular parameters for the beet vernalisation-intensity bolting model	
5.8	Pin, P.A., E. Wremerth-Weich, J. Gielen, O. Nilsson, T. Kraft	Flowering time control in beets	
5.9	Ezzahiri, B., L. Moughli	Sugar extraction problem from autumn sown sugar beet in the Gharb and	

Loukkos irigated regions of Morocco in 2011

6 Integrated Pest Management

6.1	Ladewig, E.	Development of guidelines for the integrated pest management in sugar beet and exemplary investigation of ecological and economical impacts of innovative use of plant protection products
6.2	Gutsche, V., J. Strassemeyer	Modelling environmental risk of chemical plant protection strategies in sugar beets by means of model SYNOPS
6.3	Marwitz, A., E. Ladewig	Environmental fate and risk assessment of herbicide strategies in sugar beet crop in Germany
6.4	Marwitz, A., E. Ladewig	Response of earthworm population on herbicide application intensities within a conventional and a reduced tillage system in sugar beet crop in Germany
6.5	Marwitz, A., E. Ladewig	Response of biological activity of edaphic community on herbicide application intensities within a conventional and a reduced tillage system in sugar beet crop in Germany
6.6	Fischer, F., U. Heimbach	Impact of different herbicide strategies in sugar beet on epigeic predatory arthropods
6.7	Vasel, EH., E. Ladewig	Derivation of herbicide strategies in sugar beet
6.8	Thomsen, J.N.	Development of weeding systems – state of art in Denmark
6.9	Royer, C.	Possibilities to reduce the use of chemical herbicides by using complementary mechanical tools in sugar beet crop
6.10	Kaya, R.	Possibilities of reducing herbicide use in weed control of sugar beet
6.11	Pérez, A., M. Rodríguez, J.M. Hernandéz, J. Ayala	Results on the detection of populations of <i>Chenopodium</i> spp. less sensitive to herbicides in sugar beet in Spain. Practical approach for its control
6.12	Varrelmann, M., AV. Kalfa, H. Thiel	Resistance of <i>Chenopodium album</i> to herbicides that inhibit photosynthesis at PSII – basic mechanisms
7	Fungal diseases	
7.1	Olsson, Å., L. Persson	Management of leaf diseases in Sweden
7.2	Champeil, A.	Strategy for foliar disease management
7.3	Risser, P., K. Bürcky	Securing white sugar yield by threshold-based control of foliar diseases in sugar beet
7.4	Kempl, F., C. Tomasetig, S. Gotsmi	Effects of triazols and strobilurins on the spreading of Cercospora
7.5	Kimmel, J., L. Potyondi	Fungicide resistant Cercospora strains in Hungary
7.6	Campagna, G., P. Pernici, G. Maines, S. Moretti	Monitoring Cercospora leaf spot in eastern Po Valley during 2011
7.7	Tunali, B., R. Kaya, F. Topal, Y. Tokgöz, B. Kansu, N.D. Kutluk Yilmaz	Distribution and pathogenicity of Cercospora leaf spot on sugar beet in some provinces of Turkey
7.8	Thach, T., A.L. Hansen, L. Nistrup Jørgensen, L. Munk	Disease variation and chemical control of Ramularia leaf spot in sugar beet
7.9	Persson, L.	Sugar beet as pre crop to wheat
7.10	Gollnow, M., M. Varrelmann,	Saprotrophic colonisation of sugar beet with different Fusarium spp.
	D. Christ	

- 7.12 Franke, L., K. Bürcky, U. Steiner, M. Varrelmann, C. Dircks
- 7.13 Boine, B., J. Nechwatal,C. Dircks, K. Bürcky,R. Apfelbeck, M. Varrelmann,M. Zellner

7.14 Leclerc, M., J.A.N. Filipe,S. Poggi, T. Doré, F. Montfort,P. Lucas, D.J. Bailey

Experimental approaches for quantification of *Rhizoctonia solani* AG 2-2IIIB inoculum potential in soil

Evaluation of methods based on indicator plants and quantitative PCR to estimate *Rhizoctonia solani* AG 2-2IIIB soil inoculum density in a maize-sugar beet crop rotation

- Epidemiological analysis of the effects of biofumigation on the spread of *Rhizoctonia solani* in sugar beet
- 7.15 Stojsin, V., F. Bagi, D. Buda-S kov, B. Marinković, N. Nagl
- 7.16 Chaudhary, M., S.K. Ghosh, M.S. Prabhakar

8 Nematode control

- 8.1 Liesenfeld, S., B. Augustin, K. Müller, C. Lang
- 8.2 Hartmann, E., C. Wendel, C. Lang
- 8.3 Liesenfeld, S., K. Müller, H. Bauer, C. Lang
- 8.4 Meinecke, A., A. Hermann, K. Ziegler, K. Bürcky, A. Westphal
- 8.5 Meinecke, A., K. Ziegler, K. Bürcky, A. Westphal
- 8.6 Sigl, G., G. Bodner, F.Grundler

9 Virus diseases

9.1 Thiel, H., M. Varrelmann

What is the role of the Bv-IAA candidate interacting and co-localizing with Beet necrotic yellow vein virus (BNYVV) pathogenicity factor?

Deep sequencing reveals distinct patterns of isolates between susceptible,

- 9.2 Galein, Y., N. Desoignies, M. Richard-Molard, H. Escriou, A. Champeil, C. Bragard
- 9.3 Stevanato, P.
- 9.4 Kutluk Yilmaz, N.D., H. Mennan, E. Kaya Altop

Discovering molecular markers linked to rhizomania resistance in sugar beet

A new natural weed host for Beet necrotic yellow vein virus and its vector *Polymyxa betae Keskin* from Turkey: *Raphanus raphanistrum* L. (Crucifera)

Sugar beet root rot in Serbia

Bioefficacy of microbial antagonist NIPRO (*Trichoderma viride*) and Su-Mona (*Pseudomonas fluorescens*)

- The significance of winter rape seed for the propagation of *Heterodera* schachtii
- Results and consequences of the nematode monitoring in southwestern Germany
- Nematode propagation in sugar beet varieties with varying resistance and tolerance

Is there a relationship between shallow and deep occurring populations of *Heterodera schachtii* in long-term sugar beet soils?

Reproductive potential of *Heterodera schachtii* on typical weeds in cereal stubble fields before sugar beet culture

Are nematode tolerant varieties drought tolerant too?

Rz1, Rz1Rz2 sugar beet varieties from the same field