Integrated crop protection – approaches to increase the percentage of mechanical weed control in sugar beets

IIRB Seminar ‘Advances in combined weed control’

Ulrich Bucher1, Daniel Fischer1,2, Harald Wetzler3, Dr. Klaus Bürcky4, Prof. Dr. Dr. h.c. mult. K. Köller1

1Universität Hohenheim, Institute for Agricultural Engineering, Stuttgart, Germany
2Südzucker AG Mannheim/Ochsenfurt, GBLR, Germany
3Verband baden-württembergischer Zuckerribenanbauer e.V. Heilbronn, Germany
4Kuratorium für Versuchswesen und Beratung im Zuckerribenbau, Germany

Introduction

Integrated crop control

- The rational application of a combination of biological, chemical, physical or plant-breeding measures

Physical measures:

- Direct action
- Indirect action

The aim of the research project is to improve the mechanical weed control in sugar beet cultivation

Outline

- Introduction
- Conclusions of field trials for mechanical weed control
- Challenges for mechanical intra-row weed control
- Camera-based control system of a hoe
- Prototype for intra-row weed control
- Preliminary results
- Outlook

Field trials for mechanical weed control

Employed technology:

Inter row:
- Inter-row cultivators
 - ‘L’ Blades
 - ‘A’ Blades

Intra row:
- Yetter rotary hoe
- Finger weeder
- Annaburger Turbo rotary hoe
Field trials for mechanical weed control

Results of two years field trials:
- Successful inter-row weed control
- Problems to reduce weeds within the row

Challenges for mechanical intra-row weed control

- Disturbance of beet during early growth stages
- Competition for inputs/growth factors
- Retention force of the beet and the weed is nearly the same
- Yield losses

Sensor based mechanical intra-row weed control

How large is the potential area to be cultivated?

Theoretical overview:

- Theoretically sensor based mechanical weed control on >95% of the area possible

Camera-based control system of a hoe

- Most important requirements:
 - a real time detection of the following plant position
 - driving and working velocity ≥ 1 m/s
 - theoretical seed plant position is adjustable between 14 and 20 cm
 - sufficient hoeing of interspaces
 - low losses of cultivated plants
Camera-based control system of a hoe

CCD camera with daylight cut filter (wavelengths < 780 nm are filtered)

- generated grey-level image provides a high contrast between plants and soil
- Image size: 576*80 pixels
- CCD camera is triggered by an inductive proximity switch at each full rotation of the implement

Single-row hoe prototype to control weed within the row in 2009

- Solenoid-operated valve
- CCD Camera
- Implement
- Image Processing via notebook

Some Pictures of first field trials in 2009/2010
Preliminary results

Image processing
- High detection rate of following plants > 90%
- No defined lighting conditions necessary
- Imprecise seed placement and missing plants may cause problems in position detection

Outlook

Corollary of the problems with the hydraulic drive:
- Latest prototype: Electric control cabinet, Steering-wheel of the toolbar, Toolbar, New implement

Preliminary results

- The whole system fulfills the first requirements
 - a real-time detection of the following plant position
 - operating speed ≥ 1 m/s
- Weed removal is made possible at a crucial growth stage of the sugar beet plants
- Limits of hydraulic drive has achieved at increasing operating speed!

Outlook

- Key benefits of the new electrical drive:
 - Higher velocity possible (responding behavior of the new drive)
 - Electronic components more precise than hydraulic components
 - Data collecting without additional measurement instrumentation possible
 - Any implement-movement programmable
Outlook 2011/2012

- During cultivation season 2011: two field trials to evaluate the electric drive
- Comparison of newly developed system with standard methods of weed control
- Further Development of the image processing and mechanical components

This project was financially supported by the federal state of Baden-Württemberg, Kuratorium of field trials and advisory service in sugar beet cultivation, Ochsenfurt and Schmotzer company, Bad Windsheim.